HARDWARE AND SOFTWARE COMPLEX FOR AUTOMATIC MOORING
Abstract
Nowadays the implementation of the concept of crew-free navigation is considered to be the urgent problem. It comprises many aspects related to the design of vessels, the creation of hardware and software base of navigation process control systems, algorithmic support for these systems, the development of new methods and means of measuring technological parameters, navigation and communication tools and so on. One of the most difficult procedures of the navigation process is mooring of the vessel. The article deals with the methods and means of measuring the parameters of the technological process of mooring the new type of vessel with a wheel propulsion and steering complex. Composition of the measuring instruments is established and the hardware base for implementing automatic mooring is selected. The base for creating a subsystem for automatic control of the ship's approach to the berth wall as a part of a computerized control system is proposed.
References
Reference
Borge Rokseth, Odd Ivar Haugen, Ingrid Bouwer Utne. Safety Verification for Autonomous Ships – MATEC Web Conf. 273 02002 (2019).
https://doi.org/10.1051/matecconf/201927302002
Felski, A.; Zwolak, K. The Ocean-Going Autonomous Ship–Challenges and Threats – Journal of Marine Science and Engineering 2020, 8, 41.
https://doi.org/10.3390/jmse8010041
Krzysztof Wróbel, JakubMontewka, Pentti Kujala. Towards the assessment of potential impact of unmanned vessels on maritime transportation safety. Reliability Engineering & System Safety Volume 165, September 2017, Pages 155–169
https://doi.org/10.1016/j.ress.2017.03.029
Ahvenjärvi S. The Human Element and Autonomous Ships. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, Vol. 10, No. 3, pp. 517-521, 2016
https://doi.org/10.12716/1001.10.03.18
Плющаев В.И., Галкин Д.Н., Итальянцев С.А. Компьютеризованная система управления пассажирским колесным теплоходом – Речной транспорт (XXI век). 2014. – № 6 (71), с. 35–37.
Пат. № 2225327 Российская Федерация, МПК В63Н1/04, В63Н05/03. Колесный движительно-рулевой комплекс/ Фальмонов Е.В.; заявитель и патентообладатель Фальмонов Евгений Васильевич. № 2001132474/11; заявл. 30.11.2001; опубл. 10.03.2004, Бюл. № 7., 11 с
Бычков В.Я., Грошева Л.С., Плющаев В.И. Динамика судна с колесным движительно-рулевым комплексом в условиях внешних воздействий.- Морские интеллектуальные технологии. 2019. – №4 (46), т.2, с. 139–146.
Грошева Л.С., Плющаев В.И., Управление судном с колесным движительно-рулевым комплексом при выполнении швартовых операций.– Вестник АГТУ. Сер. Морская техника и технология. 2017. – №4, с. 21–30.
https://doi.org/10.24143/2073-1574-2017-4-21-30
Плющаев В.И., Кузьмичев И.К. Пути реализации автоматической швартовки судна в рамках создания технологии безэкипажного судовождения. – Морские интеллектуальные технологии.2018. – 4(42), т.2, с. 98–103.
Грошева Л.С., Мерзляков В.И., Плющаев В.И. Швартовка судна с колесным движительно-рулевым комплексом. – Морские интеллектуальные технологии.2019.– 3(45), т.3, с. 191–195.
Getting started with Arduino. Режим доступа: https://www.arduino.cc/en/guide/introduction
Z Gingl, J Mellár, T Szépe, G Makan, R Mingesz, G Vadai and K Kopasz. Universal Arduino-based experimenting system to support teaching of natural sciences – Journal of Physics: Conference Series, Volume 1287, GIREP-MPTL 2018 9–13 July 2018, San Sebastian, Spain
https://doi.org/10.1088/1742-6596/1287/1/012052
Haniszewski, T. Conception of the Arduino platform as a base for the construction of distributed diagnostic systems. Scientific Journal of Silesian University of Technology. Series Transport. 2016, 93, 31-40.
https://doi.org/10.20858/sjsutst.2016.93.4
Бычков В.Я., Гордяскина Т.В., Рубцов А.В., Перевезенцев С.В. О первом опыте создания интеллектуальных датчиков для реализации системы управления судном. // Великие реки 2018: Материалы международной научно-методической конференции. ФГБОУ ВО «ВГУВТ». –2018. – Режим доступа: http://вф-река-море.рф/2018/PDF/68.pdf
Swarm ProductFamily. Режим доступа: https://nanotron.com/EN/pr_protect-php
Ultrasonic sensor AFEs. Режим доступа: https://www.ti.com/sensors/specialty-sensors/ ultrasonic/overview.html
Лебедева С.В., Мерзляков В.И. «Автоматизация процесса измерения расстояний между объектами в системах швартовки судов» Вестник Волжской государственной академии водного транспорта. 2018. № 56. С. 49–55.
First Sensor. Optical sensors. Режим доступа: https://www.first-sensor.com/en/product-search/ search-by-specs/index.html
Laser rangefinders for mobile and stationary systems. Режим доступа: https://www.jenoptik.com /products/lidar-sensors-technologies/laser-rangefinders
Laser docking aid system SmartDock. Режим доступа: https://www.trelleborg.com/en/marine-and-infrastructure/products--solutions--and--services/marine/docking--and--mooring/docking--aid--system/smart--dock--laser
Система мониторинга ишвартовки и стоянки судов MOORiNET. Режим доступа: http://moorinet.ru/
Harbour equipment and machinery prosertek. Режим доступа: https://prosertek.com/
Docksense control – assisted docking technology. Режим доступа: https://www.raymarine.com /assisted-docking/docksense-control.html
Volvo penta unveils pioneering self-docking yacht technology. Режим доступа: https://www.volvopenta.com/marineleisure/en-en/news/2018/jun/volvo-penta-unveils-pioneering-self-docking-yacht-technology.html
Copyright (c) 2020 Russian Journal of Water Transport

This work is licensed under a Creative Commons Attribution 4.0 International License.