INFLUENCE OF THE CORROSION FACTOR ON THE CAVITATION WEAR RESISITANCE OF SHIP PROPELLER ALLOYS

  • Yuriy N. Tsvetkov Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia https://orcid.org/0000-0002-2089-1299
  • Evgeniy O. Gorbachenko Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia https://orcid.org/0000-0002-4117-3341
  • Roman N. Larin Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia

Abstract

The resistance of the stainless steel 08H14NDL, the bronze BrA8Mts11Zh3N2L and the brass LTs40Mts3Zh to cavitation erosion was investigated in fresh water and artificial sea water. The tests were carried out on an ultrasonic vibratory apparatus. The horn of the vibratory device resonated at approximately 22 kHz, a peak-to-peak amplitude being changed from 24 to 54 μm. The distance between the horn butt-end and the specimen surface equaled 0.5 mm. It was shown, that the increase in the amplitude of vibration leads to the decrease in the difference between the cavitation wear in fresh water and the sea water. It was demonstrated that under the cavitation attack of high intensity the wear of the brass in the sea water can be essentially lower than the one obtained in the fresh water. The demonstrated paradox may be attributed to the peculiarities of the cavitation impact on the ultrasonic vibratory apparatus combined with the plasticizing action of the aggressive liquid. The ultrasonic frequency of the shock waves action on the surface increases dislocations mobility, whereas the stripping the surface layers with sea water alleviates the discharge of the dislocations on the surface: the chemomechanical effect takes place.

Keywords: cavitation wear, metallic alloy, ship propeller, ultrasonic magnetostriction vibrator, sea water, fresh water, microhardness, chemomechanical effect

References

Ponkratov, D. DES Prediction of Cavitation Erosion and Its Validation for a Ship Scale Propeller / D. Ponkratov // 9th International Symposium on Cavitation (CAV2015). – Journal of Physics: Conference Series 656 (2015). – Р. 1–4. https://doi.org/10.1088/1742-6596/656/1/012055

Фомин В.В. Гидроэрозия металлов. – М.: Машиностроение, 1977. – 287 с.

Цветков Ю.Н. Кавитационное изнашивание металлов и оборудования. – СПб.: Изд-во СПбГПУ, 2003. – 155 с.

Mӧller H., Boshoff E. T., Froneman H. The corrosion behavior of a low carbon steel in natural and synthetic seawaters // The Journal of the South African Institute of Mining and Metallurgy. – 2006. – Vol. 106. – P. 585–592.

Elbeik S., Tseung A.C.C., Mackay A.L. The formation of calcareous deposits during the corrosion of mild steel in seawater // Corrosion Science. – 1986. – Vol. 26. – P. 669–680. https://doi.org/10.1016/0010-938x(86)90032-6

Osman M. M., Corrosion inhibition of aluminium-brass in 3,5 % NaCl solution and seawater // Materials Chemistry and Physics. – 2001. – Vol. 71. – P. 12–16. https://doi.org/10.1016/s0254-0584(00)00510-1

Basumatary J., Nie M., Wood R. J. K. The synergistic Effects of Cavitation Erosion-Corrosion in Ship Propeller Materials // Journal of Bio- and Tribo-Corrosion. – 2015. – №12. – P. 1–12. https://doi.org/10.1007/s40735-015-0012-1

Тимербулатов М.Г. Усовершенствование методики и определение кавитационной стойкости металлов применительно к гидротурбинам // Заводская лаборатория. – 1968. – №12. – С.1508–1511.

Waring S., Preiser H.S., Thiruvengadam A. On the role of corrosion in cavitation damage// Journal of Ship Research. – 1965. – V.9. – p. 200–208.

Пылаев Н. И., Эдель Ю.У. Кавитация в гидротурбинах – Л.: Машиностроение, 1974. – 256 с.

Белый В.И., Некоз А.И. Исследование кавитационно-эрозионного изнашивания металлов в химически-активных средах// Проблемы трения и изнашивания – Киев: Тэхника, 1981. – вып.19. – С.76–79.

Волин В.Э., Гринберг А.Я. Влияние электрохимической коррозии на скорость кавитационной эрозии материалов// Тр. ВНИИ-Гидромаш, М.: Энергия, 1975. – вып.46. – С.44-53.

Некоз А.И., Стечишин М.С., Сологуб Н.А., Белый В.И. Определение износостойкости материалов при кавитационно-эрозионнном изнашивании// Проблемы трения и изнашивания. – 1983. – вып.24. – С. 97–103.

Basumatary J., Wood R. J. K. The synergistic Effects of Cavitation Erosion and Corrosion for Nickel aluminium bronze with oxide film in 3,5 % NaCl solution // Wear. – 2017. – Vol. 376–377. – P. 1286–1297. https://doi: 10.1016/j.wear.2017.01.047.

Sreedhar B.K., Albert S.K., Pandit A.B. Cavitation damage: Theory and measurements – A review // Wear. – 2017. – V. 372–373. – P. 177–196. http://dx.doi.org/10.1016/j.wear.2016.12.009.

ASTM G32-10 Standard test method for cavitation erosion using vibratory apparatus. – ASTM International, 2010. – 19 p.

Гликман Л.А. Коррозионно-механическая прочность металлов. – М.-Л.: Машгиз, 1955. –175 с.

ASTM D1141-98. Standard Practice for the Preparation of Substitute Ocean Water. West Conshohocken, PA, ASTM International, 1999. – 3 p.

Cavanaugh G.M. Formulae and Methods VI. Woods Hole, MA, The Marine Biological, 1975. – 84 p.

Гутман Э.М. Механохимия металлов и защита от коррозии. – М.: Металлургия, 1981. – 271 с.

Terauchi Y., Matuura H., Kitamura M. Correlation of cavitation damage tests with residual stress measurements // Bulletin of the JSME. – 1973. – V. 16. – No. 102. – P. 1829–1838. https://doi.org/10.1299/jsme1958.16.1829

Krause H., Matheus M. Investigation of cavitation erosion using X-ray residual stress analysis // Wear. – 1987. – Vol. 119. – No. 3. – P. 343–352. https://doi.org/10.1016/0043-1648(87)90040-8

Кулёмин А.В., Кононов А.В., Стебельков И.А. Повышение усталостной прочности деталей путём ультразвуковой поверхностной обработки // Проблемы прочности. – 1981. – №1. – С. 70–74.

Author Biographies

Yuriy N. Tsvetkov , Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia

Head of the Shiprepairing Subdepartmentб Doctor of Technical Sciences; Professor, Admiral Makarov State University of Maritime and Inland Shipping, 5/7 Dvinskaya Str., St. Petersburg, 198035, Russian Federation, e-mail: yuritsvet@mail.ru

Evgeniy O. Gorbachenko , Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia

Postgraduate, Shiprepairing Subdepartment, Admiral Makarov State University of Maritime and Inland Shipping, 5/7 Dvinskaya Str., St. Petersburg, 198035, Russian Federation, e-mail: jenyraqwerty@gmail.com

Roman N. Larin , Admiral Makarov State University of Maritime and Inland Shipping, St. Petersburg, Russia

Associate Professor, PhD in Engineering Science, Admiral Makarov State University of Maritime and Inland Shipping, 5/7 Dvinskaya Str., St. Petersburg, 198035, Russian Federation

Published
06-03-2020
How to Cite
Tsvetkov, Y. N., Gorbachenko , E. O., & Larin, R. N. (2020). INFLUENCE OF THE CORROSION FACTOR ON THE CAVITATION WEAR RESISITANCE OF SHIP PROPELLER ALLOYS. Russian Journal of Water Transport, (62), 91-100. https://doi.org/10.37890/jwt.vi62.12
Section
Shipbuilding, ship repair, and ecological safety of the ship