Fiberglass as an alternative to metals in ship repair
Abstract
The article presents the intermediate results of a study carried out to determine the prospects for reducing the metal consumption of ship repair. The area of research is ship repair, in particular, the repair of hulls and superstructures of metal ships, and the object is fiberglass used in the repair, in particular, their strength and durability. The studies were carried out using well-known methods - spontaneous peeling, shearing, limiting states. The results obtained made it possible to establish that the use of fiberglass plastics can reduce the metal consumption of ship repairs by three times. In addition, the article describes a method for calculating the thickness of a fiberglass coating, which is equivalent in strength to a metal backup, and also provides expressions for evaluating the calculated resistance of the coating, which determines its durability. In conclusion, it was concluded that it is necessary to expand the study area of the applicability of fiberglass during the repair of ships, not limiting it only to such obvious objects of repair as the hull, superstructure, pipelines.
References
Нелюб В.А. Применение полимерных композиционных материалов в судостро-ении для ремонта корабельных надстроек//Ремонт, восстановление, модернизация. 2013. № 5. С. 21-24.
Гуменюк Н.С., Грушин С.С. Применение композитных материалов в судострое-нии/ Н.С. Гуменюк, С.С. Грушин // Современные наукоемкие технологии. 2013. №8. C. 116-117.
Мишкин, С.И. Полимерные композиционные материалы в судостроении / С.И. Мишкин, М.С. Дориомедов, А.И. Кучеровский // Новости материаловедения. Наука и техника. – 2017 – Вып. 1 (25) – с. 60-70.
Каблов Е.Н. Конструкционные и функциональные материалы -основа экономи-ческого и научно-технического развития России // Вопросы материаловедения. 2006. №1. С. 64-67.
B. Mahato, V. Babarinde, S. Abaimov, S. Lomov, I. Akhatov, Interface strength of glass fibres in polypropylene: dependence on the cooling rate and the degree of crystallinity John Wiley & Sons Inc. (United States), № 41, p. 1310-1322 doi:1002/pc.25456.
Sanjay K. Nayak, Smita Mohanty, Sushanta K. Samal, The effect of interfacial adhe-sion on the structural-mechanical behavior of hybrid composites January 2009polymer composites 31(7):1247 – 1257 doi:10.1002/pc.20914.
N. Sugihara, F. R. Jones, Improving The Adhesion Of High-Performance Polymer Fi-bers Using Functional Plasma-Polymer Coatings March 2009 Polymer Composites 30 (3): 318 – 327 doi:10.1002/pc.20603.
Alexandre Wahrhaftig, Henrique Ribeiro, Ademar Nogueira. A structural composite for marine boat constructions. Marine Composites // Woodhead Publishing Series in Composites. De-sign and Performance. Science and Engineering 2019, Pages 301-314. DOI 10.1016/B978-0-08-102264-1.00010-8.
Anoshkin A.N., Vil’deman V.E, Lobanov D.S., Chikhachev A.I. Evaluation of repair efficiency in structures made of fibrous polymer composite materials // Mechanics of Com-posite Materials. – 2014. – Vol. 50. – No. 3, – pp.311-316. – DOI 10.1007/s11029-014-9416-0.
Тихомиров, А.В. Научные основы технологий получения полимерных изделий и покрытий в судостроении и в судоремонте : монография / А.В. Тихомиров. – Москва : РУСАЙНС, 2017. – 248 с. ISBN 978-5-4365-1885-5.
Cao J., Cheng H.S., Lee W., Padvoiskis J., Peng X.Q., Akkerman R., Graaf E.F.De., Boisse P., Hivet G., Launay J., Luycker E.De., Morestin F., Chen J., Gorczyca J.L., Liu L., Sherwood J., Harrison P., Long A., Wiggers J., Lomov S.V. et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and Benchmark results // Composites Part A: Applied Science and Manufacturing. – 2008. – Т. 39. – № 6. – P. 1037-1053.
G. Sorkin, C.H. Pohler, A.B. Stavovy, F.F. Borriello. An overview of fatigue and fracture for design and certification of advanced high performance ships // Engineering Fracture Mechanics Volume 5, Issue 2, June 1973, Pages 307-352. DOI 10.1016/0013-7944(73)90025-8.
Лобанов Д.С., Вильдеман В.Е., Бабин А.Д., Гринев М.А. Экспериментальные исследования влияния внешних воздействий и загрязняющих сред на работоспособность волокнисто-армированных полимерных композиционных материалов // Механика компо-зитных материалов. – 2015, Вып. 51. – №1 – с. 69-76.
Мацеевич, Т.А. Анализ влияния химического состава и концентрации компо-нентов смеси полимер-растворитель на ее предел принудительной упругости и вязкость / Т.А. Мацеевич, А.А. Аскадский, О. Коврига, А. Мацеевич // Международная полимерная наука и технология. – 2017 – Т. 44, №. 7 – С. 27–32. DOI: 10.1177/0307174X1704401005.
Vallons K., Adolphs G., Lucas P., Lomov S.V., Verpoest I. The influence of the stitching pattern on the internal geometry, quasi-static and fatigue mechanical properties of glass fibre non-crimp fabric composites // Composites Part A: Applied Science and Manufacturing. – 2014. – Volume 56. – pp. 272-279.
Helbling C., Karbhari V.M., Durability. Assesment of Combined Enviromental Epo-sur and Bending /In.: Proc. of 7-th Int. Symp. on Fiber Reinforsed Polym. Reinf. Concrete Struc-tures (FRPRCS-7). New Orlean, Loisiana, USA. – 2005. – pp. 1379-1418.
Бабушкин, А.В. Экспериментальное исследование и моделирование свойств композиционных материалов в условиях сложных термомеханических воздействий / А.В. Бабушкин, Д.С. Лобанов // Фундаментальные проблемы теоретической и прикладной ме-ханики. Вестник Нижегородского университета им. Н.И. Лобачевского, 2011, № 4 (5), с. 1984-1986.
Болотин, В.В. Трещиностойкость композитных материалов на полимерных свя-зующих при повышенных температурах / А.Е. Ефимов, Н.С. Мезенцев, И.В. Шебунин, В.Н. Щугорев // Механика композитных материалов. – 1988. – №5. – С.839-844.
Copyright (c) 2021 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.