Mechanism of the attack on metal surface in wear under ultrasonic cavtation
Abstract
Two series of tests of annealed metal materials — copper, brass L60 and aluminum-magnesium alloy AMg4,0 — were carried out. The first series consists first in upsetting the cylindrical samples of the listed above alloys on a press to a different strain rate, then cutting the deformed samples and measuring the microhardness of the area adjacent to the center of the samples. The first series results in constructing the calibration plots of microhardness as a function of strain. During the second series the tests of the same materials for cavitation wear were carried out in the fresh water on the ultrasonic vibratory apparatus. The frequency and amplitude of the apparatus horn vibration amount to 22 kHz and 28 μm respectively. The microhardness of the samples surface exposed to cavitation attack was measured after the definite spans of time within the incubation period and the maximum value of the microhardness was registered. Marking the maximum microhardness value on the calibration plot yields the strain rate reached on the surface under cavitation attack before the removal of wear particles begins. On the basis of the found values of the strain the stress state rigidity of the surface layers under cavitation attack was evaluated. The obtained coefficients of stress state rigidity allowed drawing the conclusion, that cavitation attack on the material being tested on the ultrasonic vibratory apparatus occurs through the microjets impacts.
References
Погодаев Л. И., Шевченко П. А. Гидроабразивный и кавитационный износ судового оборудования. — Л.: Судостроение, 1984. — 263 с.
Gravalos, I., Kateris, D., Xyradakis, P., Gialamas, Th. Cavitation erosion of wet-sleeve lin-ers: Case study // Journal of Middle European Construction and Design of Cars (MECCA). — 2006. — Vol. IV. — No. 3. — p. 10–16.
Георгиевская Е. П. Кавитационная эрозия гребных винтов и методы борьбы с ней. — Л.: Судостроение. — 1978. – 206 с.
Цветков Ю. Н. Кавитационное изнашивание металлов и оборудования. – СПб.: Изд-во СПбГПУ, 2003. – 155 с.
Sreedhar B. K., Albert S. K., Pandit A. B. Cavitation damage: Theory and measurements – A review // Wear. — 2017. — V. 372–373. — P. 177–196. https://doi.org/10.1016/j.wear.2016.12.009
Петров А. И., Скобелев М. М., Ханычев А. Г. Исследование сравнительной стойкости и кавитационной эрозии образцов материалов и покрытий проточной части гидромашин // Вестник МГТУ им. Н. Э. Баумана. Сер. «Машиностроение». — 2015. — № 2. — С. 128–137. https://doi.org/10.18698/0236-3941-2015-2-128-137
Kwok C. T., Man H. C., Cheng F. T., Lo K. H. Developments in laser-based surface engi-neering processes: with particular reference to protection against cavitation erosion // Surface and Coatings Technology. — 2016. — No. 291. — P. 189–204. https://doi.org/10.1016/j.surfcoat.2016.02.019
Qiao Y., Cai X., Chen Y., Cui J., Tang Y., Li H., Jiang Z. Cavitation erosion properties of a nickel-free high-nitrogen Fe-Cr-Mn-N stainless steel // Materials and technology. — 2017. — Vol. 51. — No. 6. — P. 933–938. https://doi.org/10.17222/mit.2017.034
Momeni S., Tillmann W., Pohl M. Composite cavitation resistant PVD coatings based on NiTi thin films // Materials and Design. — 2016. — No. 110. — P. 830–838. https://doi.org/10.1016/j.matdes.2016.08.054
Standard test method for cavitation erosion using vibratory device. ASTM 2010. G32-10.
Vyas B, Preece C. M. Stress produced in a solid by cavitation // Journal of Applied Physics. — 1976. — V.47. — No 12. — P. 5133–5138. https://doi.org/10.1063/1.322584
Okada T., Iwai Y. A study of cavitation bubble collapse pressures and erosion, Part 1: A method for measurement of collapse pressures // Wear. — 1989. — V. 133. — P. 219–232. https://doi.org/10.1016/0043-1648(89)90037-9
Tsvetkov Y., Gorbachenko E., Fiaktistov Y. Hardening Peculiarities of Metallic Materials During Wear Under Ultrasonic Cavitation. In: Murgul V., Pukhkal V. (eds) International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019. EMMFT 2019. Advances in Intelligent Systems and Compu-ting, vol. 1258, рр.409–420, Springer, Cham. https://doi.org/10.1007/978-3-030-57450-5_35
Кулёмин А. В., Кононов А. В., Стебельков И. А. Повышение усталостной прочности деталей путём ультразвуковой поверхностной обработки // Проблемы прочности. — 1981. — №1. — С. 70–74.
Марков А. И., Озерова М. А., Устинов И. Д. Применение ультразвука при алмазном выглаживании деталей // Вестник машиностроения. — 1973. — №9. — С. 57–61.
Абрамов О. В., Хорбенко И. Г., Швегла И. Г. Ультразвуковая обработка материалов М.: Машиностроение, 1984. — 280 с.
McLean D. Mechanical properties of metals. Wiley; First Edition, 1962, 403 p.
Дель Г. Д. Определение напряжений в пластической области по распределению твёрдости. — М.: Машиностроение, 1971. — 199 с.
Колмогоров В. Л. Напряжения, деформации, разрушение. – М.: Металлургиздат, 1970. – 196 с.
Смирнов-Аляев Г. А. Механические основы пластической обработки металлов. – Л.: Машиностроение, 1968. – 272 с.
Bowden E. P., Brunton J. H. // Proceedings of Royal Society, London. – A282. – 1964. – V. 331. – P. 549–565.
Vyas B., Preece C. M. Cavitation erosion of face centered cubic metals// Metallurgical Transactions A. – 1977 June. – V.8A. – P. 915–923. https://doi.org/10.1007/bf02661573
Copyright (c) 2022 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.