Evaluation of the effect of heat treatment on the structure parameters and cold resistance of metals produced by additive electric arc growth
Abstract
In this work, we studied the influence of the type and mode of heat treatment on the structure and parameters of cold resistance of 09Mn2Si and 07Cr25Ni13 steels obtained by additive electric arc growth. It is shown that, under optimal printing conditions, a relatively uniform and fine-grained material structure is observed in 09Mn2Si steel, while a dendritic structure is observed in the 07Cr25Ni13 alloy. Heat treatment of the investigated alloys leads to a more uniform distribution of structural components in metals, and in steel 07Cr25Ni13 the dendrites are destroyed, which leads to a decrease in the anisotropy of material properties. Also, heat treatment leads to a significant reduction in internal residual stresses in the material. The results of the study of impact strength in a wide range of low temperatures show that in the initial state after surfacing, the investigated alloys have a significant anisotropy of impact strength (up to 8 and 25% for alloy 09Mn2Si and 07Cr25Ni13, respectively). Heat treatment significantly reduces the anisotropy of the properties of the studied alloys and increases the values of impact strength. So for steel 09Mn2Si after heat treatment, an increase in impact strength by more than 1.5 times is observed over the entire temperature range. The studies carried out made it possible to identify the temperature range of the ductile-brittle transition and the impact strength of 09Mn2Si and 07Cr25Ni13 alloys, which is of great practical importance in the manufacture of parts and structural elements of the Northern version.
References
Malladi, Avinash and Sarma, S.B.S. 3D Metal Printing Technologies. The IUP Journal of Mechanical Engineering 10(1) (2017): 48-54.
Filippo Montevecchi, Giuseppe Venturini, Antonio Scippa, Gianni Campatelli. Finite Element Finite Element Modelling of Wire-arc-additive manufacturing Process. Procedia CIRP 55 (2016): 109–114. https://doi.org/10.1016/j.procir.2016.08.024
S. Williams, Martina Filomeno, Addison Adrian, Ding Jialuo, G. Pardal, P. Colegrove. Wire+Arc Additive Manufacturing Materials Science and Technology 32(7) (2016): 641-647. https://doi.org/10.1179/1743284715y.0000000073
M.A. Jackson, A. Van Asten, J.D. Morrow, S. Min, F.E. Pfefferkorn. Energy consumption model for additive-subtractive manufacturing processes with case study International Journal of Precision Engineering and Manufacturing-Green Technology 5(4) (2018): 459-466. https://doi.org/10.1007/s40684-018-0049-y
Pinto-Lopera Jesús Emilio et al. Real-Time Measurement of Width and Height of Weld Beads in GMAW Processes Sensors 16(9) (2016): 1500. https://doi.org/10.3390/s16091500
Johnnieew Zhong Li, Mohd Rizal Alkahari, Nor Ana Rosli. Review of Wire Arc Additive Manufacturing for 3D Metal Printing International Journal of Automation Technology 13(3) (2019): 346-353. https://doi.org/10.20965/ijat.2019.p0346
Горынин И. В. Конструкционные материалы – важный компонент надежности и экологической безопасности инфраструктуры Арктики / Арктика: экология и экономика. 2015. № 3 (19). С. 82–87.
Солнцев Ю. П., Ермаков Б. С, Слепцов О. И. Материалы для низких и криогенных температур: энциклопедический справочник. СПб.: ХИМИЗДАТ, 2008. 768 с.: ил. ISBN 978-5-93808-157-4.
Карташев М. Ф., Пермяков Г. Л., Трушников Д. Н., Миндибаев М. Р. Исследование влияния деформационного упрочнения на механические свойства образцов из сплава АМг5, полученных способом многослойной наплавки / Вестник МГТУ им. Г.И. Носова. 2019. Том. 17. №3. С. 38-45. https://doi.org/10.18503/1995-2732-2019-17-3-38-45
Kabaldin, Y.G., Shatagin, D.A., Anosov, M.S. et al. Diagnostics of 3D Printing on a CNC Machine by Machine Learning Russian Engineering Research 41 (2021): 320–324. https://doi.org/10.3103/s1068798x21040109
Кабалдин Ю.Г и др. Исследование влияния режимов 3D-печати на структуру и хладостойкость стали 08Г2С / Кабалдин Ю.Г., Аносов М.С., Рябов Д.А., Колчин П.В., Шатагин Д.А., Киселев А.В. // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2021. Т.19. № 4. С. 64–70. https://doi.org/10.18503/1995-2732-2021-19-4-64-70
Copyright (c) 2022 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.