Methodology for risk assessment at the conceptual design stage of offshore structures during the offshore fields development

Abstract

The article carried out a qualitative risk assessment taking into account the developed scale "Probability / frequency and using "The Classifier of consequences" for several options for the offshore fields development. "The Consequence Category Classifier" takes into account environmental, financial, life, health and time risk criteria affecting construction and operation. The risk analysis was carried out taking into account the existing regulatory documentation and based on the analysis of the causes of the occurrence of factors that determine the outcomes of accidents, taking into account all the features of the cases under consideration for the life cycle stages: Design work, Production and testing, Use (operation). The degree of agreement in the performance of the experts group work was made based on the calculation of the Kendall rank coefficient. Subcategories were determined simultaneously for all the considered field development facilities according to the results of the performed calculations in risk categories. a Risk register was compiled based on the developed scale "Probability/Frequency" and the developed "Classifier of Consequence Categories". The risk register included 72 risks. The “Risk Index” was determined as a result of calculations. As a result, based on the results of a qualitative risk assessment, a "Risk Matrix" was developed based on the methodology presented in the Register Rules. In this case, the Alarp model or the principle of reasonable sufficiency was used. This risk assessment allows you to determine: the degree of the risk importance, prioritize different categories of risks, choose the best option with the lowest "Risk Index".

Keywords: analysis, criteria, risk assessment, drilling platform, offshore structures, probability, levels of a hierarchy, array

References

Государственная программа Российской Федерации «Развитие судостроения и техники для освоения шельфовых месторождений на 2013-2030 годы». Утверждена постановлением Правительства РФ от 15.04.2014 № 304.

Мукаев Р.Ч. Оценка рисков инвестиционных проектов разработки нефтяных месторождений методом имитационного моделирования (Монте-Карло) // Проблемы анализа риска. Т. 12. 2015. № 3. С. 22-35.

Мазурина Е.В., Разманов С.В. Учёт рисков и неопределённости в инвестиционном проектировании нефтегазового бизнеса // Проблемы экономики и управления нефтегазовым комплексом. 2006. № 6. С. 4-13.

Р 50.1.084–2012 Рекомендации по стандартизации. Менеджмент риска. Реестр риска. Руководство по созданию реестра риска организации.

Кулешова Е.В. Управление рисками проектов: учебное пособие. 2-е изд. Томск: Эль Контент, 2015. 188 с.

ГОСТ Р51901.22-2012 Национальный стандарт Российской Федерации Менеджмент риска. Реестр риска. Правила построения.

Иванова О.А., Благовидова И.Л., Родькина А.В. Система критериев для сопоставления и оценки применимости различных типов буровых установок в суровых климатических условиях // Научные проблемы водного транспорта. 2020. № 65. С. 37–53.

Ставровский Е.Р., Лазарев Е.И. Совершенствование методов вероятностной оценки экономической эффективности и рисков инвестиционных проектов в газовой отрасли // Проблемы экономики и управления нефтегазовым комплексом. 2011. № 4. С. 32-41.

Федеральный закон от 21.07.1997 г. № 116-ФЗ «О промышленной безопасности опасных производственных объектов».

Анохин А.Н. Методы экспертных оценок. Учебное пособие. Обнинск, 1996, 148 с.

Правила классификации, постройки и оборудования плавучих буровых установок и морских стационарных платформ. Санкт-Петербург, Российский морской регистр судоходства, 2018, 460 с.

Гохман О.Г. Экспертное оценивание. Учебное пособие. Изд-во ВГУ, 1991.

ГОСТ Р 51901.21-2012 Национальный стандарт Российской Федерации. Менеджмент риска. Реестр риска. Общие положения.

Guidelines for formal safety assessment for use in the IMO rule-making process. MSC. MEPC.2/Circ. 12/Rev.2. London, International Maritime Organization, April 2018. 71 p.

Recommended practice DNVGL-RP-B401. DNV GL AS, June 2017. 64 p.

NACE Standard SP0387-2006 (formerly RP0387-99) Item No. 21036. NACE International, 2006. 9 p.

ГОСТ Р 58771-2019 Менеджмент риска. Технологии оценки риска.

Modelling and analysis of marine operations. Det Norske Veritas, 2011. 17 p.

Joachim Berger. IMPac Offshore Engineering, Hamburg. Ise protection structures. «Schiff und Hafen», June 2008. № 6.

Parshall J. Evolving Subsea Technology Tackles Huge New Riscks of Today,s Projects. Journal of Petroleum Technology, May 2008. pp. 40–47.

Paul Verlaan, Ken Croasdale. ICE ISSUES RELATING TO THE KASHAGAN PHASE II DEVELOPMENT, NORTH CASPIAN SEA. POAC 01, August 2001. Ottawa, Canada.

InnoRig 21C-The super safe jack-up of the future // Offshore Technology International. 2012. URL: http://www.offshore-publication.com (дата обращения 18.03.2021).

6 October 2016 – Deutsche Oel & Gas – Drilling of natural gas well KLU A-2 off to a successful start. URL: http//www.deutsche-oel-gas.com. (дата обращения 18.03.2021).

30 September 2015 – Deutsche Oel & Gas – Completion of infrastructure – Summary of work in the Kitchen Lights Unit in 2015. URL: http//www.deutsche-oel-gas.com. (дата обращения 18.03.2021).

Kirwan B. A validation of three Human Reliability Quantification techniques – THERP, HEART and JHEDI: Part III - Results and validation exercise // Applied Ergonomics. 1997. 28(1). pp. 27-39.

Kirwan B. A Guide to Practical Human Reliability Assessment // London: Taylor & Francis. 1994.

Kirwan B., Ainsworth L.K. A Guide to Task Analysis // London: Taylor & Francis. 1992.

Kirwan B., Kennedy R., Taylor-Adams S., Lambert B. A validation of three Human Reliability Quantification techniques – THERP, HEART and JHEDI: Part II - Practical aspects of the usage of the techniques // Applied Ergonomics. 1997. 28(1). pp. 17-25.

Lees F. Human factors and human element // Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control. 1996. Vol. 3. Butterworth Heinemann.

Kobyliński L. System and risk approach to ship safety, with special emphasis on stability // Archives of Civil and Mechanical Engineering. 2007. 7. 4.

Kobyliński L., Staszewska K. Ocena ryzyka stateczności statku nieuszkodzonego // Ocena ryzyka przy zagrożeniu spowodowanym czynnikiem ludzkim. Fundacja Bezpieczeństwa Żeglugi, Raport 10. 2007.

Нефтяные слезы России: Экономика: РБК. URL: https://www.rbc.ru/economics/10/04/2012/5703f5c09a7947ac81a66c05 (дата обращения 20.04.2021).

Последствия аварий на подводных переходах нефтяных магистралей и методы борьбы с ними. 2015. URL: https://1cert.ru/stati/posledstviya-avariy-na-podvodnykh-perekhodakh-neftyanykh-magistraley-i-metody-borby-s-nimi (дата обращения 23.04.2021).

Author Biographies

Olga A. Ivanova , «Corall JSC», Sevastopol, Russia; Sevastopol State University, Sevastopol, Russia

Ph.D. in Engineering Science, Design Engineer of 1st Category of General Engineering and Naval Architecture Departament 11, General Engineering Office 111 “Corall” JSC Central Design Bureau, 1, Repina st., Sevastopol; 299028, Assistant Professor of the Department of Ocean Technology and Shipbuilding Sevastopol State University, 33, Universitetskaya st., Sevastopol, 299053

Anna V. Rodkina , Sevastopol State university, Sevastopol, Russia

Ph.D. in Engineering Science, Assistant Professor of the Department of Innovative shipbuilding and shelf development technologies Sevastopol State University, 33, Universitetskaya st., Sevastopol, 299053

Published
07-06-2022
How to Cite
Ivanova, O. A., & Rodkina, A. V. (2022). Methodology for risk assessment at the conceptual design stage of offshore structures during the offshore fields development. Russian Journal of Water Transport, (71), 54-73. https://doi.org/10.37890/jwt.vi71.251
Section
Shipbuilding, ship repair, and ecological safety of the ship