Non-motorized passage of ice through hydraulic units during the operational period
Abstract
The task of ensuring the unhindered passage of ice during the spring ice drift through hydraulic structures remains relevant today. Ensuring the non-blocking passage of spring ice can be achieved by the device of structures that create such hydrodynamic conditions under which ice floes break into smaller ones. The aim of the work is to obtain theoretical solutions for determining the forces acting on an ice floe when it passes through a drop; bending moments that create conditions for breaking ice floes. The main schemes of the passage of the ice floe through the concentrated drop are highlighted and examined. Solutions for the calculation of the fault have been obtained. The Archimedean forces are determined for all five schemes of ice floe movement. Equations are obtained for calculating bending moments relative to a randomly selected section, the differentiation of which gives a dependence on the determination of the distance to the dangerous section. Introducing some assumptions, an approximate method for calculating the fracture of ice floes in any section has been developed. To create a concentrated drop, it is proposed to build a structure in front of the main waterworks; the design is confirmed by an author's certificate.
References
2. Gelfan A., Gustafsson D., Motoviliv Y., Arheimer B., Kalugin A., Krylenko I., Lavrenev A. Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues. Clim Change. 2017. Vol.141, pp.449-515. Doi 10.1007/s10584-016-1710-5.
3. Панфилов Д. Ф. Разрушение ледяных полей под влиянием местных изменений уровня воды // Гидротехническое строительство. 1965. № 12. С. 21–25.
4. Коржавин К. Н. Пропуск льда при строительстве и эксплуатации гидроузлов. М.: Энергия. 1973. 160 с.
5. Fomicheva N. N. The constructions, which provide passing of ice through low-pressure waterworks in spring period / Scince. Education. Practice: materials of the Intarnational University Science Forum (Canada, Totonto). May 27. 2020. Infinity Publishing. pp. 225-231. Doi: 10.34660/INF.2020.23.42.001.
6. Фомичев Б. С., Фомичева Н. Н., Кротов С. А. Натурные исследования прочности льда Новосибирского водохранилища // Материалы Международной научно-практической конференции. Пермь: Пермский государственный университет. 2008. С.113-118.
7. Fomicheva N., Panov D., Kalashnikov A. Studies of the movement of ice through low-pressure waterwork. Journal of Physics: Conference Series. 2021. Doi: 10.1088/1742-6596/2131/3/032072.
8. Fomicheva N., Heckert E., Modina M., Beryoza I. Calculation of the fracture of the ice fields at a concentrated drop. IOP Conference Series: Earth and Environmental Science. 2021. Doi: 10.1088/1755-1315/867/1/012005.
9. Циликин В. Ф. Моделирование пропуска льда при проведении лабораторных гидравлических исследований // Исследования и расчёты заторов льда, вопросы ледотермики и гидродинамики. Л.: Гидрометеоиздат. Вып.192. 1972. С.30-36.
10. Авторское свидетельство №1476061 – Сооружение для пропуска льда через гидротехническое сооружение. Фомичева Н. Н. – опубл. В БИ. 1989. №6.
Copyright (c) 2022 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.