Study of the influence of the vessel stern shape on its hydrodynamic characteristics

Abstract

Determining the main dimensions of the small vessels while designing is an important and difficult task due to the large number of mutually exclusive factors affecting the hydrodynamic characteristics of such vessels. The existing patterns for determining the length, width and draft of small vessels are quite general. This complicates their usage for the vessel of a specific design. In this case, it is necessary to check technical solutions, one of the ways that may be implied is the usage of computational fluid dynamics (CFD) methods. This paper presents the results of the numerical simulation of boat movement in the transient mode with Froude numbers up to 1.2. The process of preparation and numerical modeling of the aerodynamics of a composite wing in the NUMECA/FineMarineTM software package is described, the choice of the turbulence model and the parameters of the computational grid, including the resolution of the boundary layer, is justified. The study of the influence of three variants of the width and shape of the aft tip on the change in draft, trim angle, wetted surface and resistance of the boat is carried out. An increase in the width of the flat planing part of the aft tip has a favorable effect on the hydrodynamic characteristics of a small vessel, even when moving in transition mode at L/B from 3.5 to 3.99. At the same time, the use of the extension of the underwater part of the aft tip requires a more detailed study.

Keywords: Computer fluid dynamics, planing, speed boat, porpoising stability, planning hull beam, towing test, NUMECA/FineMarineTM, transient mode of boat’s movement

References

Bakеr G.S. Sоmе Experiments in Connection with the Design of Floats for Hydro-Aeroplanes, ARC (British) R & M, № 70, 1912.

Sottorf W. Experiments With Planing Surfaces, NACA TM 661, 1932 and NACA TM 739, 1934.

Shoemaker J.M. Tank Tests of Flat and Vee-Bottom Planing Surfaces, NACA TN 509, Novem-ber 1934.

Sambraus A. Planing Surface Tests at Large Froude Numbers-Airfoil Comparison, NACA TM №. 848, February 1938.

Locke Jr., F.W.S. Tests of a Flat Bottom Planing Surface to Determine the Inception of Planing, Navy Department, BuAer, [Research Division Report No. 1096], December 1948.

Korvin-Kroukovsky B.V., Savitsky D., Lehman W. Wetted Area and Center of Pressure of Planing Surfaces, Stevens Institute of Technology, Davidson Laboratory Report №. 360, August 1949.

Murray A.B. The Hydrodynamics of Planing Hulls, [Meeting of the New England Section of SNAME, February 1950], 1950.

Savitsky D., Neiclinger J.W. Wetted Area and Center of Pressure of Planing Surfaces at Very Low Speed Coefficients, Stevens Institute of Technology, [Davidson Laboratory Report №. 498], July 1954.

Clement E.P. A configuration for a stepped planning boat having minimum drag (dynaplane boat). Monograph. Second edition. 2005 (published by author), 76p.

Седов Л.И. Плоские задачи гидродинамики и аэродинамики. Изд. 2, исп. – М.: Изд-во «Наука», 1966. 448 с.

Егоров И.Т., Соколов В.Т. Гидродинамика быстроходных судов. – Л.: Судостроение, 1971. 424 с.

Theoretical Manual ISIS-CFD v7.1 Equipe Modélisation Numérique, Laboratoire de Méca-nique des Fluides, CNRS-UMR 6598, Ecole Centrale de Nantes, B.P. 92101, 44321 Nantes Cedex 3, France. https://doi.org/10.3934/dcdss.2014.7.2i

User Manual FINE™/Marine v7.1, Documentation v3.1a NUMECA International, 187-189, Chaussee de la Hulpe 1170 Brussels, Belgium.

Garo R., Imas L. Hydrodynamic Performance of a Submerged Lifting Surface Operating at High Speed, [4th High Performance Yacht Design Conference], 2012. https://doi.org/10.3940/rina.hpyd.2012.23

Wackers J., Ait Said K., Deng Gan Bo, Queutey P., Visonneau M., Mizine I. Adaptive Grid Refinement Applied to RANS Ship Flow Computation, [28th Symposium on Naval Hydrodynam-ics], 2010. https://doi.org/10.1179/str.2012.59.2.004

Roux Y., Wackers J., Dorez L. Slamming computation on the multihull Groupama 3, [The second international conference on innovation in high performance sailing yachts, 30 June - 1 July 2010 “Innovsail 2010”], 2010. https://doi.org/10.3940/rina.innovsail.2010.01

Wackers J, Ait Said K, Deng GB, Queutey P, Visonneau M, Mizine I. Adaptive grid refinement applied to RANS ship flow computation. In: [28th Symposium on naval hydrody-namics]. Pasadena, California; 2010. https://doi.org/10.1179/str.2012.59.2.004

Ваганов А.М. Проектирование скоростных судов. – Л.: Изд-во «Судостроение», 1978 - 280с.

Даняев А. Гидродинамика и «рюшечки» // «Катера и яхты», 2 (224), 2010, С. 44-49.

Чебан, Е.Ю. Исследование влияния некоторых особенностей формы корпусов глиссирующих судов на их сопротивление численными методами / Е.Ю. Чебан, Д.В. Никущенко // Научно-технический сборник Российского морского регистра судоходства. – 2017. – № 48-49. – С. 59-69. – EDN ZULPNP.

Исследование влияния формы катера типа "RIB" на его гидродинамические характеристики численными методами / Е.Ю. Чебан, О.В. Мартемьянова, С.В. Гачев, А.А. Мухина // Вестник Волжской государственной академии водного транспорта. – 2019. – № 59. – С. 79-90. – EDN CQMOIC.

Author Biographies

Egor Yu. Cheban , Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Nizhny Novgorod, Russia

Doctor of Technical Sciences, Professor, professor of Department of Hydrodynamics, Ship Theory and Environment Safety of Ships Volga State University of Water Transport, 603905, Nizhny Novgorod, Nesterova 5, e-mail: egor.cheban.2@gmail.com

Olga V. Martmianova , Volga State Unuversity of Water Transport, Nizhny Novgorod, Russia

postgraduate student of Hydrodynamics, ship theory and ship’s ecological safety department, Volga State University of Water Transport 603950, Nizhniy Novgorod, Nesterova, 5, e-mail: dovnn@yandex.ru

Marina Yu. Polyashova , Volga State Unuversity of Water Transport, Nizhny Novgorod, Russia

Master student, Volga State University of Water Transport 603950, Nizhniy Novgorod, Nesterova, 5, e-mail: m.polyashova@list.ru

Aleksandr A. Mol'kov , Institute of applied physics of the Russian academy of sciences, Nizhny Novgorod, Russia

Senior Researcher, Optical Methods Laboratory (221), Department of Radiophysical Methods in Hydrophysics (220) Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) 46 Ul'yanov Street, Nizhny Novgorod, 603950, Russia, e-mail: molkov@ipfran.ru

Published
18-09-2023
How to Cite
Cheban, E. Y., Martmianova, O. V., Polyashova, M. Y., & Mol’kov, A. A. (2023). Study of the influence of the vessel stern shape on its hydrodynamic characteristics. Russian Journal of Water Transport, (76), 75-88. https://doi.org/10.37890/jwt.vi76.388
Section
Shipbuilding, ship repair, and ecological safety of the ship