Analysis of accidents in maritime transport using the method of Bayesian trust networks

Abstract

Maritime incidents, though rare, have a significant impact on both the global economy and the environment. Improving maritime navigation practices always requires new ways to enhance safety, inevitably involving learning from past experiences and mistakes. In this context, probabilistic analysis of incidents and their associated consequences can play a crucial role in creating a safer and more efficient maritime transportation system. Bayesian networks constitute a class of probabilistic models based on statistics, decision theory, and graph theory.

This paper describes the analysis of maritime incident statistics by selecting probabilistic parameters influencing the risk of their occurrence. Important parameters from this database are grouped, and a Bayesian network is constructed to illustrate the relationships between them. This, in turn, provides insight into the dependencies existing among the variables in the database and the fundamental reasons for these accidents. The data for this study are based on the Lloyds Register and IMO incident databases from 1990 to 2022. Key factors from this database are grouped, and a Bayesian network is built to show the relationships between the corresponding variables, providing an understanding of the probabilistic dependencies among the variables in the database and the primary causes of these incidents.

Keywords: Bayesian trust network, risk analysis, information Bayesian model, acyclic graphs, damage database, prior knowledge, network analysis, probabilistic network

References

Попов А.Н. Теоретико-методологические основы интеграции и отображения информации в морской эргатической системе : Дис. … докт. физ. мат. наук: 05.22.19 / А.Н. Попов – Новороссийск, 2021 – 340 с

Probabilistic method of predicting ship collision damage// Brown AJ, Chen D.// Ocean Eng Int J. – 2002- 6(1)-P.54–65.

A tutorial on learning with Bayesian networks. // Heckerman D.// In: Jordan M. editor, Learning in graphical models. - Cambridge (MA): MIT Press - 1998 - P. 301–354.

International Maritime Organization (IMO): Maritime Facts and Figures

https://www.imo.org/en/KnowledgeCentre/Pages/MaritimeFactsFigures-Default.aspx

[Дата обращения 18.10.2023]

Реконструкция различных навигационных сценариев судна «Ever Given», включая посадку на мель в Суэцком канале с использованием симулятора моста с современными электронными навигационными картами // Попов А.Н., Зеленков Г.А., Папулов Д.С. // Journal of Physics: Conference Seriesthis -2021 - 2061(1)

Lloyds Register: Maritime Casualty Incidents

https://www.lloydslistintelligence.com/knowledge-hub/data-storytelling/maritime-casualty-incidents

[Дата обращения 20.10.2023]

Effect of ship structure and size on grounding and collision damage distribution// Pedersen PT, Zhang S. // Ocean Eng. – 2000 – 27 – P. 1161–1179.

Causation, prediction, and search, adaptive computation and machine learning.// Spirtes P, Glymour C, Scheines R. // Cambridge (MA): MIT Press. 2nd ed.– 2000

Author Biographies

Anatoly N. Popov , Admiral Ushakov Maritime State University, Novorossiysk, Russia

PhD (technical science), Senior lecturer of the Department of  « Operation of water transport, navigation» Admiral F.F. Ushakov State Maritime University, Novorossiysk, e-mail: an.popov.mga@gmail.com

Gennadiy A. Zelenkov , Admiral Ushakov Maritime State University, Novorossiysk, Russia

PhD ( physico-mathematical science), Senior lecturer of the Department of  «System analysis and process management in water transport» Admiral F.F. Ushakov State Maritime University, Novorossiysk,  e-mail: an.popov.mga@gmail.com

Valeriy S. Pluzhnik , Admiral Ushakov Maritime State University, Novorossiysk, Russia

Postgraduate student   of «Operation of water transport, waterways and hydrography»  Admiral F.F. Ushakov State Maritime University, Novorossiysk,   e-mail: an.popov.mga@gmail.com                

Oleg E. Borodin , Admiral Ushakov Maritime State University, Novorossiysk, Russia

Postgraduate student   of «Operation of water transport, waterways and hydrography»  Admiral F.F. Ushakov State Maritime University, Novorossiysk,  e-mail: an.popov.mga@gmail.com          

Published
20-06-2024
How to Cite
Popov, A. N., Zelenkov, G. A., Pluzhnik, V. S., & Borodin, O. E. (2024). Analysis of accidents in maritime transport using the method of Bayesian trust networks. Russian Journal of Water Transport, (79), 250-258. https://doi.org/10.37890/jwt.vi79.485
Section
Water transport operation, waterways, communications and hydrography