Improvement of vibration protection of ship machines and mechanisms based on the use of dynamic stiffness compensators
Abstract
The purpose of this study is the theoretical justification for improving vibration protection of ship machines and mechanisms based on the use of dynamic stiffeners. The main disadvantage of existing vibration protection devices is the impossibility of resolving the objectively existing contradiction: their efficiency is achieved with a minimum total stiffness of the suspension and, at the same time, to limit the mobility of the mechanism protected from vibration, the stiffness of the elastic elements must be sufficiently high. Design solutions of dynamic vibration dampers are proposed with spring-loaded inertial masses coaxially located relative to the main elastic element of the suspension, which vibrate in antiphase relative to vibrations of the object protected from vibrations. Design schemes of dynamic vibration damper with stiffness compensation developed on the basis of provisions of automatic control theory are presented. Based on the analysis of the developed theoretical assumptions, the main factors affecting the value of the vibration isolation coefficient and allowing to obtain a dynamically stable oscillatory system are determined. The main results of preliminary mathematical modeling of vibration protection system using the model of dynamic damper of low mass vibrations are given. The result of the research is confirmation of the prospects of the proposed technical solutions and the possibility of practical implementation of a full-fledged solution to the problem of protecting ship machines and mechanisms from vibrations.
References
Глушков С.П. Виброизоляция тепловых двигателей. 1999. Новосибирск: НГАВТ. 215 с.
Kochergin V.I., Glushkov S.P. Improvement of machine protection against vibration // Transportation Research Procedia. XII International Conference on Transport Infrastructure: Territory Development and Sustainability. 2022. Vol. 61 (5). P. 674–680. DOI: 10.1016/j.trpro.2022.01.107.
Змитровцов Г.В., Загребельный О.И. Замена силовой установки в условиях санкций на примере пассажирского теплохода проекта 485 С «Александр Шабалин» // Труды Крыловского государственного научного центра. 2023. Специальный выпуск 1. С. 148–151. DOI: 10.24937/2542-2324-2023-1-S-I-148-151.
Ermolaev A., Plekhov A., Titov D., Vagapov Yu. Vibration damping in a motor drive shaft system operating under active power flow oscillation // IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 2018. 17632266. DOI: 10.1109/EIConRus.2018.831743.
Покусаев М.Н., Хмельницкий К.Е., Кадин А.А. Оценка эффективности использования виброизолирующих устройств для подвесных лодочных моторов // Научные проблемы водного транспорта. 2020. № 64. С. 124–129. DOI: 10.37890/jwt.vi64.103.
Покусаев М.Н., Хмельницкая А.А., Хмельницкий К.Е., Кадин А.А. Снижение локальной вибрации на румпеле подвесного лодочного мотора при помощи транцевой многослойной вибронакладки // Научные проблемы водного транспорта. 2020. № 65. С. 80–85. DOI: 10.37890/jwt.vi65.130.
Mirsaidov M., Abdikarimov R., Khudainazarov Sh., Sabirjanov T. Damping of high-rise structure vibrations with viscoelastic dynamic dampers // E3S Web of Conferences 224, TPACEE-2020. Vol. 224. No. 14. DOI: 10.1051/e3sconf/202022402020.
Zhelezniak A., Zhukov V., Tsvetkov Y., Tuzov L., Bordug A. The stability of slow speed diesel engines under conditions of considerable destabilizing impact // 2018 IEEE Conference of Russian Young Researchers in Electricaland Electronic Engineering (EIConRus). St. Petersburg and Moscow. P. 159–162. DOI: 10.1109/EIConRus.2018.8317053.
Juzėnas K., Korobko E.V., Kuzmin V., Bubulis A. Vibroprotection system with the elastic element and the electrically controlled damping // Mechanika 24 (5). November 2018. DOI: 10.5755/j01.mech.24.5.21070.
Zaev E., Rath G., Kargl H., 2013. Energy Efficient Active Vibration Damping // 13th Scandinavian International Conference on Fluid Power. June 3-5, September 2013. Linköping, Sweden. DOI: 10.3384/ecp1392a35.
Khomenko A.P., Eliseev S.V., Artyunin A.I. Dynamic damping of vibrations of technical object with two degrees of freedom // IOP Conference Series Earth and Environmental Science. October 2017. No. 87 (8). 082025. DOI: 10.1088/1755-1315/87/8/082025.
Ermolaev A., Plekhov A., Titov D., Vagapov Yu. Vibration damping in a motor drive shaft system operating under active power flow oscillation // IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). 2018. 17632266. DOI: 10.1109/EIConRus.2018.831743
Abdullaev Z., Yusupov M., Mirzaev., Noraliev N. Dynamic dampers of vibrations of inherited-deformable systems with finite number of degrees of freedom // IOP Conference Series Materials Science and Engineering. August 2020. 896:012116. DOI: 10.1088/1757-899X/896/1/012116.
Корытов М.С., Щербаков В.С., Почекуева И.Е. Использование тарельчатых пружин для создания виброзащитного механизма с участком квазинулевой жесткости // Научно-технический вестник Брянского государственного университета. 2020. № 3. С. 377–387.
Klitnoi V, Gaydamaka A. On the problem of vibration protection of rotor systems with elastic adaptive elements of quasi-zero stiffness // Diagnostyka. 2020. No. 21 (2). P. 69–75. DOI: 10.29354/diag/122533.
Глушков С.П., Кочергин В.И. Новые подходы к обеспечению виброзащиты машин // Фундаментальные и прикладные вопросы транспорта. 2022. № 1 (4). С. 41–47. DOI: 10.52170/2712-9195/2022_1_41.
Кочергин В.И., Глушков С.П. Совершенствование виброзащиты подвижного состава железнодорожного транспорта // Вагоны и вагонное хозяйство. 2022. № 3. С. 38–40.
Copyright (c) 2024 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.