FULL-SCALE STUDIES OF FLUORESCENCE FEATURES OF SURFACTANT FILMS ON EUTROPHIC WATER WAVY SURFACE

Abstract

The current paper presents the results of a full-scale study of the fluorescence features of pollutants ( diesel fuel, Urals oil), as well as an alcoholic solution of oleic acid, which imitates oil by visco-elastic characteristics. The experiment was carried out on the Gorky Reservoir under conditions of wind waves. Local areas of artificial slicks were created for multiple intersections at different angles to the wind and waves with continuous lidar sounding of the upper water layer. Signals were recorded by the ninth generation UVL-9 laser ultraviolet fluorescent lidar developed by the Institute of Oceanology of the Russian Academy of Sciences. At signal analysis, spectral intensities and fluorescence features of the studied substances are determined, possibilities of slick detecting as well as film thickness estimation are made, examples of surfactant film detecting behind the oleic slick where visual observation of pollutants does not give a result are showed. The obtained results are useful for the further development of fluorescent methods and devices for operational remote sensing of surface pollution on wave water surface.

Keywords: fluorescence, lidar sounding, slicks, anthropogenic pollution, oil, diesel, wind waves, inland waters

References

Leifer I., State of the art satellite and airborne marine oil spill remote sensing: Application to the BP Deepwater Horizon oil spill / I. Leifer, W. J. Lehr, D. Simecek-Beatty, E. Bradley, R. Clark, P. Dennison, J. Wozencraft // Remote Sensing of Environment. – 2012. – Vol. 124. – Pp. 185-209. https://doi.org/10.1016/j.rse.2012.03.024. https://doi.org/10.1016/j.rse.2012.03.024

Fingas M., The challenges of remotely measuring oil slick thickness / M. Fingas // Remote sensing – 2018. – Vol. 10. – Is. 2. – Pp. 319-337. https://doi.org/10.3390/rs10020319. https://doi.org/10.3390/rs10020319

Богородский В.В. Дистанционное обнаружение нефтяных загрязнений вод ИК-лазером / В.В. Богородский, М.А. Кропоткин. – Л.: Гидрометеоиздат, 1975. – 40 с.

Kordyban E., Instrumentation to measure the oil thickness on wavy water surface / E. Kordyban, S. Cuker // Review of Scientific Instruments. – 1978. – Vol. 49. – Is. 11. – Pp. 1574-1578. https://doi.org/10.1063/1.1135313

Индикация нефтяных пленок на море с помощью лидара на CO2 / К.С. Шифрин, В.Ю. Осадчий, Г.К. Беляков, И.Я. Гуревич, В.А. Пороховник, А.А. Лимин // В кн.: Пятый Всес. Симпозиум по лазерному и акуст. Зонд. Атмосферы. Тезисы. – 1978. – Т. 1. – С.155-159.

Babichenko S., Laser remote sensing of the European marine environment: LIF technology and applications/ S. Babichenko // Remote Sensing of the European Seas. Springer, Dordrecht. – 2008. – Pp. 189-204. https://doi.org/10.1007/978-1-4020-6772-3_15. https://doi.org/10.1007/978-1-4020-6772-3_15

Мазуров И.В., Лазерная диагностика нефтепродуктов и растворенных органических веществ в воде / И.В. Мазуров, В.В. Фадеев, В.В. Чубаров // Материалы УI Пленума РГ по оптике океане. – 1983. – С. 28-32.

Development of airborne oil thickness measurements / C.E. Brown, M.F. Fingas // Marine Pollution Bulletin. – 2003. – Vol. 47. – Is. 9-12. – Pp. 485-492. https://doi.org/10.1016/S0025-326X(03)00203-0. https://doi.org/10.1016/s0025-326x(03)00203-0

Hengstermann T., Lidar Fluorosensing of Mineral Oil Spills on the Sea Surface / T. Hengstermann, R. Reuter // Applied Optics. – 1990. – Vol. 29. – Is.22. – Pp. 3218-3227. https://doi.org/10.1364/ AO.29.003218. https://doi.org/10.1364/ao.29.003218

Brown C.E. Laser fluorosensors / C.E. Brown // In book: Oil spill science and technology. Gulf Professional Publishing. – 2011. – P. 171-184. https://doi.org/10.1016/C2015-0-04851-1. https://doi.org/10.1016/b978-1-85617-943-0.10007-3

Карабашев Г.С. Сравнение физических характеристик флуоресценции техногенных загрязнений с характеристиками флуоресценции натуральной воды / Г.С. Карабашев, М.А. Шматко // Материалы УI Пленума РГ по оптике океане. – 1983. – С. 20-27.

Hoge F.E. Oil film thickness measurement using airborne laser-induced water Raman backscatter / F.E. Hoge, R.N. Swift // Applied Optics. – 1980. – Vol. 19. – Is. 19. – Pp. 3269-3281. https://doi.org/10.1364/AO.19.003269. https://doi.org/10.1364/ao.19.003269

Piskozub J., A Lidar system for remote measurement of oil film thickness on sea surface / J. Piskozub, V. Drozdowska, V. Varlamov // Environments. – 1997. – Vol. 17. – Pp. 19.

Архив погоды Волжской ГМО. [Электронный ресурс]. — Режим доступа: https://rp5.ru (дата обращения: 16.04.2020).

Palmer S.C. Ultraviolet Fluorescence Lidar (UFL) as a Measurement Tool for Water Quality Parameters in Turbid Lake Conditions / S.C. Palmer, V.V. Pelevin, I.V. Goncharenko, A. Kovács, A. Zlinszky, M. Présing, H. Horváth, V. Nicolás-Perea, H. Balzter, V. Tóth // Remote Sensing. – 2013. – Vol. 5. – Pp.4405-4422. https://doi.org/10.3390/rs5094405. https://doi.org/10.3390/rs5094405

Goodman R.H. Simple remote sensing system for the detection of oil on water, Environmental Studies Research Funds, Report Number 098. Research Department, Esso Resources Canada Ltd, Calgary, Alberta, Canada, – 1988. – Pp. 6–9.

Fingas M. How to measure slick thickness (or not) / M. Fingas // Proc. of the 35th Arctic and Marine Oil spill Program Technical Seminar. – 2012. – Pp. 617–652. https://doi.org/10.1016/s0025-326x(03)00204-2

Ермаков С.А. О гребенчатой структуре границ сликов на морской поверхности / С.А. Ермаков, О.Ю. Лаврова, И.А. Капустин, А.В. Ермошкин, А.А. Мольков, О.А. Даниличева // Современные проблемы дистанционного зондирования Земли из Космоса. – 2018. – Т. 15. – № 7. – С. 208–217. DOI: 10.21046/2070-7401-2018-15-7-208-217. https://doi.org/10.21046/2070-16dzzconf-2018a

Ermakov S.A. Drift and shape of oil slicks on the water surface / S.A. Ermakov, O.A. Danilicheva, I.A. Kapustin, A.A. Molkov // Proc. SPIE 11150, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2019, 111500J (14 October 2019). https://doi.org/10.1117/12.2533203. https://doi.org/10.1117/12.2533203

Пелевин В.В. Мелкомасштабная пространственная изменчивость биооптических полей по данным флуоресцентного лидара. Диссертация на соискание ученой степени кандидата физико-математических наук. ИО РАН. Москва. – 2017. – 159 с. https://doi.org/10.1007/bf02526507

Lennon M. Detection and mapping of oil slicks in the sea by combined use of hyperspectral imagery and laser induced fluorescence / M. Lennon , S. Babichenko, N. Thomas, V. Mariette, G. Mercier, A. Lisin // EARSeL eProceedings. – 2006. – Vol. 5. – Is. 1. – Pp. 120–128.

Kyriakdis N.B., Fluorescence Spectra Measurement of Olive Oil and Other Vegetable Oils / N.B. Kyriakdis, P. Skarkalis // Journal of AOAC International. –2000. – Vol. 83, – Is. 6, – Pp. 1435–1439. https://doi.org/10.1093/jaoac/83.6.1435. https://doi.org/10.1093/jaoac/83.6.1435

Author Biographies

Aleksandr A. Molkov , Institute of Applied Physics of the Russian Academy of Sciences. Volga State University of Water Transport, Nizhny Novgorod, Russia

Ph.D., Researcher of the Department of Radiophysical Methods in Hydrophysics, Institute of Applied Physics of the Russian Academy of Sciences, 46, Ulyanov st, Nizhny Novgorod, 603950, Russia, e-mail: a.molkov@inbox.ru

Vadim V. Pelevin , P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, Moscow, Russia

Senior researcher of the Department of the Laboratory of land-ocean interactions and the anthropogenic impact, P.P. Shirshov Institute of Oceanology of the Russian Academy of Sciences, 36 Nahimovskiy av., Moscow, 117997, Russia, e-mail: vvpelevin@gmail.com

Published
01-06-2020
How to Cite
Molkov, A. A., & Pelevin, V. V. (2020). FULL-SCALE STUDIES OF FLUORESCENCE FEATURES OF SURFACTANT FILMS ON EUTROPHIC WATER WAVY SURFACE. Russian Journal of Water Transport, (63), 90-102. https://doi.org/10.37890/jwt.vi63.80
Section
Shipbuilding, ship repair, and ecological safety of the ship