THE DEPLOYING BUOYDING SYSTEM DESIGN IN A STATIONARY FLOW AS A PART OF A MEDIUM-FREQUENCY HYDRO-ACOUSTIC COMPLEX AND ITS CHARACTERISTICS RESEARCH

  • Maria N. Mozgovaya Institute of Applied Physics of the Russian Academy of Sciences
  • Sergey N. Bychkov Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia
  • Konstantin A. Kostylev Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia https://orcid.org/0000-0003-1061-9192

Abstract

The present study provides a designing the floating buoy system. The floating buoy is designed to determine the mid-frequency hydroacoustic set location, located in the underwater position, using sonar communication signals. The approach considers the stability at large angles of inclination analysis. For this reason, the main stability criteria is recovery moment. As a result, the following diagrams are plotted – statical stability curve and dynamical stability curve to estimate the research. Moreover, the study includes defining spatial configuration at steady flow. It is also important to mention the basic requirements for the construction of the buoy are ensuring positive buoyancy according to the terms of reference, lack of sea water absorption, sustainability to hydrostatic pressure and corrosion resistance. The study reveals designing the construction, which is able to prevent capsizing. Consequently, the buoy has positive stability, sufficient recovery moment enable to return the structure to its original position and meet the claimed buoyancy requirements.

Keywords: stability, buoyancy, righting arm, stability moment, heeling moment, dynamical stability, metacentric height, stability at large angles of inclination, hydroacoustic station, neutrally buoyant cable, constant current.

References

Urick R.J. Principles of Underwater Sound. McGraw-Hill, 1967 – 342 p.

Черданцев Н.В., Черданцев С.В. Остойчивость понтонов в зумпфах угольных разрезов на больших углах крена// Вестник КузГТУ.2013. №4. –с. 32–37.

Rawson K.J. Stability. Basic Ship Theory / K.J. Rawson, E.C. Tupper. – Oxford: Elsevier Butterworth-Heinemann, 2001. – 784p. DOI: 10.1016/B978-0-7506-5398-5.X5000-6

Сизов В.Г. Теория корабля: Учебн. пособие. – Одесса: Феникс, 2008. – 459 с.

Biran A., Ship hydrostatics and stability /1st ed., Elsevier Butterworth-Heinemann, Oxford 2003, – 344 p.

Борисов Р.В. Статика корабля / Р.В. Борисов, В.В. Луговский, Б.М. Мирохин, В.В. Рождественский. – СПб. : Судостроение, 2005. – 256 с.

Megel, J. Metacenter and ship stability / J. Megel, J. Kliava / American Journal of Physics. – 2010. – Vol. 78, Issue 7. – p. 738-747. DOI: 10.1119/1.3285975

Благовещенский С.Н. Справочник по статике и динамике корабля: в 2-х т. / С.Н. Благовещенский, А.Н. Холодилин. – 2-е изд., перераб. и доп. – Л.: Судостроение, 1976 – 1976. Т. 1 : Статика корабля. – 1976. – 336 с.

Бекенский Б.В. Практические расчеты мореходных качеств судна/ Б.В. Бекенский. – М. : Транспорт, 1974. – 264 с.

Berteaux H.O. Buoy Engineering. John Wiley and Sons, 1976 – 334p.

Author Biographies

Maria N. Mozgovaya , Institute of Applied Physics of the Russian Academy of Sciences

senior research assistant of the Department of Physical Acoustics, Institute of Applied Physics of the Russian Academy of Sciences, 46, Ulyanov st, Nizhny Novgorod, 603950, e-mail: mariya@ipfran.ru

Sergey N. Bychkov , Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia

principal engineer of the Department of Physical Acoustics, Institute of Applied Physics of the Russian Academy of Sciences, 46, Ulyanov st, Nizhny Novgorod, 603950, e-mail: bychkov@ipfran.ru

Konstantin A. Kostylev , Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia

Candidate of Technical Sciences, Head of Hydroacoustic Engineering Sector, Institute of Applied Physics of the Russian Academy of Sciences, 46, Ulyanov st, Nizhny Novgorod, 603950, e-mail: kostylev@ipfran.ru

Published
29-08-2020
How to Cite
Mozgovaya, M. N., Bychkov, S. N., & Kostylev, K. A. (2020). THE DEPLOYING BUOYDING SYSTEM DESIGN IN A STATIONARY FLOW AS A PART OF A MEDIUM-FREQUENCY HYDRO-ACOUSTIC COMPLEX AND ITS CHARACTERISTICS RESEARCH. Russian Journal of Water Transport, (64), 79-88. https://doi.org/10.37890/jwt.vi64.99
Section
Shipbuilding, ship repair, and ecological safety of the ship