Methodological and practical recommendations for improving the quality of forecasts of innovative development of science, technology and engineering
Abstract
The generated long-term forecasts for the development of science, technology and engineering are widely used to determine priority areas of scientific and technological development. In an unstable economic situation, it is important to ensure the quality of forecasts, since they determine the priorities and priority areas for financing scientific and technological development projects. Therefore, the problem of improving the quality characteristics of long-term forecasts for the development of science, technology and engineering is relevant. The authors set the goal of determining a set of measures to improve. the quality of the generated forecasts, taking into account modern conditions of economic development, characterized by instability and sanctions restrictions. For this purpose, a systematic and integrated approach to the development of proposals is used. Complexity lies in a comprehensive analysis of the factors influencing the forecast results, and proposals are formed on the basis of a systematic account of the component indicators of forecast quality and mutual connections. The paper presents proposals to improve the accuracy, usefulness, information content, completeness and reliability of forecasts. The similarities and differences between the proposals and the existing ones are shown, and the directions for applying the developed recommendations by the participants in the formation of long-term forecasts for the development of science, technology and engineering are also revealed.
The novelty of the article lies in the fact that the authors, based on the use of systematic and integrated approaches, have identified the main methodological and practical proposals for improving the quality characteristics of long-term forecasts for the development of science, technology and engineering. This will help improve the quality of scientific and technological forecasts and effectively spend budget funds to finance new projects formed on the basis of forecasting results.
References
Rabochaya kniga po prognozirovaniyu / Otv. red. I.V. Bestuzhev-Lada. M.: Mysl', 2005. URL: http://www.f-mx.ru/sociologiya_i_obshhestvoznanie/evolyuciya_socialnogo_prognozirovaniya.html?ysclid=lq987t5pn1856978260 . Data obrashcheniya 17.12.2023.
Afanas'ev A.L., Kuslin S.S. Metod otsenki kachestva nauchno-tekhnologicheskikh prognozov // V sb. VII Vserossiiskaya nauchno-prakticheskaya konferentsiya molodykh uchenykh i spetsialistov organizatsii – assotsiirovannykh chlenov Rossiiskoi akademii raketnykh i artilleriiskikh nauk. Molodezh'. Nauka. Innovatsii v oboronno-promyshlennom komplekse, M.:FGBU RARAN, FGUP «VNII «TsentR» - 2023 – S. 142 -149 .
Komkov N.I. Zakonomernosti nauchno-tekhnologicheskogo razvitiya i ikh ispol'zovanie pri prognozirovanii //Mir. 2010. – tom 1. № 3(3) -. S. 72-91.
Komkov N.I. Problemy upravleniya razvitiem krupnomasshtabnykh sotsial'no-ehkonomicheskikh sistem: analiz, opyt, metodologicheskie osnovy i perspektivy. – M.: Izd. dom «NaukA», 2020 – 152 s.
Sergei Golubev, Andrey Efremov, Anna Gorokhova, Vladimir Gayduk, Ekaterina Kravets. Development of the scientific and technological forecasting methodology based on using TIPS instruments//Economic Annals-KHKHI: Volume 187, Issue 1-2, Pag-es: 223-231, February 28, 2021. DOI: 10.21003 / ea.V187-22
Scott Keller and Colin Price, Beyond Performance: How Great Organizations Build Ultimate Competitive Advantage, first edition, Hoboken, NJ: John Wiley & Sons, 2011.
iFORA: trekhmernyi vzglyad na rastushchie oblasti nauki i tekhnologii// Natsional'nyi issledovatel'skii universitet «Vysshaya shkola ehkonomikI». URL: https://issek.hse.ru/news/254274661.html. Data obrashcheniya 05.10.2023 g.
Golubev S.S., Chebotarev S.S., Chibinev A.M., Yusupov R.M. Metodologiya nauchno-tekhnologicheskogo prognozirovaniya Rossiiskoi Federatsii v sovremennykh usloviyakh. M.: Kreativnaya ehkonomika, 2018.- 145 s.
Burenok V.M, Durnev R.A., Kryukov K.YU. Metodicheskii podkhod k zagorizontnomu prognozirovaniyu razvitiya sistem vooruzheniya // Vooruzhenie i ehkonomika. – 2018.– № 2 (44).
Belykh T. I. Ispol'zovanie sposoba realizatsii iskusstvennogo intellekta v prognozirovanii / T.I. Belykh, A. V. Burdukovskaya // Izvestiya Baikal'skogo gosudarstvennogo universiteta. — 2018. — T. 28, № 3. — S. 500–507. — DOI: 10.17150/2500- 2759.2018.28(3).500-507.
Yazid Tikhamarinea Doudja Souag-Gamane, Ali Najah, Ahmedb Ozgur, Kisic AhmedEl-Shafied. Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm // Journal of Hydrology. Volume 582, March 2020, 124435
Golubev S.S., Gubin A.M., Ivanus A.I., Tsivileva A.E., Shcherbakov A.G. Kontseptual'nye podkhody k sverkhdolgosrochnomu nauchno-tekhnologicheskomu prognozirovaniyu na osnove iskusstvennoi generatsii novykh znanii // Innovatsii i investitsii, 2023. - №8. – S. 236-239.
Pronin A.YU., Lyaskovskii V.L. K voprosu formirovaniya ehkspertnykh grupp i otsenki kompetentnosti spetsialistov, privlekaemykh dlya nauchno-tekhnicheskikh ehkspertiz. // Nauchnyi vestnik oboronno-promyshlennogo kompleksa Rossii. – 2023. - № 3. – S. 76-82.
Golubev S.S., Chebotarev S.S. Informatsionnye tekhnologii kak klyuchevoi mekhanizm ustoichivogo razvitiya oboronnykh promyshlennykh predpriyatii v sovremennykh usloviyakh // Ehkonomicheskie strategii. 2018. T. 20. № 3 (153). S. 68-81.
Gregory N.Stock, Jacob Chia-AnTsai, James J.Jiang, GaryKlein. Coping with uncertainty: Knowledge sharing in new product development projects. // International Journal of Project Management. Volume 39, Issue 1, January 2021, Pages 59-70
Dovguchits S.I., Mushkov A.YU. Edinoe informatsionnoe postranstvo oboronno-promyshlennogo kompleksa. Rezul'taty rabot po ego formirovaniyu. //Nauchnyi vestnik oboronno-promyshlennogo kompleksa Rosii. – 2018. - № 2. – S. 5-9.
Galushkin A. I. Neironnye seti: osnovy teorii / A. I. Galushkin. — M. : Goryachaya liniya-Telekom, 2010. — 496 s.
Huaizhi Wanga, Yangyang Liua, Bin Zhou. Taxonomy research of artificial intelligence for deterministic solar power forecasting // Energy Conversion and Management. Volume 214, 15 June 2020, 112909.
Nisrine Zougagha, Abdelkabir Charkaouib, Abdelwahed Echchatbic. Artificial intelligence hybrid models for improving forecasting accuracy // Procedia Computer Science. Volume 184, 2021, Pages 817-822.
Danilo Dessìab, Francesco Osborned, DiegoReforgiato, Recuperoa Davide Buscaldie, EnricoMottad. Generating knowledge graphs by employing Natural Language Processing and Machine Learning techniques within the scholarly domain // Future Generation Computer Systems. Volume 116, March 2021, Pages 253-264.Статья поступила в редакцию 11.11.2019 г.
Copyright (c) 2024 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.