Efficient computation of ship’s wave-making resistance using michell’s integral

Abstract

The aim of the present paper is to find efficient method of computation the wave-making resistance of a ship using mitchell’s integral. The computational schemes described in publications suggest the use of simple quadratures (trapezoidal and Simpson’s rule) with a fixed number of integration’s intervals. This approach assumes manual setup of the algorithm for calculating the wave-making resistance for each new ship and makes it difficult to estimate the error of the obtained results. It is shown that the use of these simple quadratures makes it possible to obtain reliable results, but at the cost of tens of billions of calculations of the ship's surface function. The applicability of more advanced universal quadratures for calculating the mitchell’s integral is investigated: adaptive Newton-Cotes rules, Gauss-Kronrod rules and Clenshaw-Curtis quadratures. As a result, it is established that the Clenshaw-Curtis quadrature provides a reliable and efficient calculation of the mitchell’s integral. The computational scheme using this quadrature allows you to build an automatic algorithm for calculating the ship's wave-making resistance by type ship method.

Keywords: wake-making resistance of ship, michell’s integral, extended quadratures, adaptive quadratures, Newton-Cotes rules, Gauss-Kronrod rules and Clenshaw-Curtis quadratures, determination of ship’s wake-making resistance by type ship method

References

Пикин Ю.Д. Тимошин Ю.С. Расчёт волнового сопротивления судов на электронно-вычислительной машине // Труды НТО Судпрома, 1965. Вып. 64. с. 62-69.

Shahjada bin Tarafder Md., Gazi bin M. Khalil, Ikhtiar bin Mahmud S. M. Computation of wave-making resistance of wigley hull form using michell’s integral // Journal - The Institution of Engineers, Malaysia, 2007. Vol. 68, No.4. pp. 33-40.

А.Ш. Готман А.Ш. Теоретические и экспериментальные основы гидродинамики водоизмещающих судов. Новосибирск. Изд-во СГУВТ, 2018 – 613 с.

Камил М.С. Вычисление интеграла Митчела волнового сопротивления для однокорпусного судна методом конечного корня // «Морские интеллектуальные технологии», 2014. N. 3 (25) T.1. С. 83-90.

Павленко, Г.Е Сопротивление воды движению судов. М.: Морской транспорт, 1956. 508 с.

Войткунский, Я.И. Сопротивление воды движению судов Л.: Судостроение, 1988. 288 с.

Ашик, В.В. Проектирование судов Л.: Судостроение, 1985. 320 с.

Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: Раско, 1991. 272 с.

Forsythe G.E., Malcolm M.A., Moler C.B. Computer Methods for Mathematical Computations Prentice Hall, 1977. 270 pp.

Kronrod, a C code which computes both a Gauss quadrature rule of order N, and the Gauss-Kronrod rule of order 2*N+1. URL: https://people.sc.fsu.edu/~jburkardt/c_src/kronrod/kronrod.html (дата обращения 19.07.2022). https://doi.org/10.1524/anly.1996.16.4.335

Kahaner D., Nash S., Moler C.B, Forsythe G.E., Malcolm M.A. Numerical Methods and Software. Prentice Hall, 1989 495 pp.

O’Hara, H., Smith F. J. Error estimation in Clenshaw-Curtis quadrature formula. Computer Journal, 1968. N. 11 ( 2), pp. 213–219. https://doi.org/10.1093/comjnl/11.2.213

Oliver J. A Doubly-Adaptive Clenshaw-Curtis Quadrature Method. The Computer Journal, 1972. Vol. 15 (2). pp 141–147. DOI: https://doi.org/10.1093/comjnl/15.2.141.

Author Biographies

Alexander J. Platov , Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod, Russia

Dr. Sci. Tech, head of Applied Informatics and Statistic Chair, Nizhny Novgorod State University of Architecture and Civil Engineering,  65, Ilyinskaya st., Nizhny Novgorod, Russia, 603950

Juri I. Platov , Volga State University of Water Transport, Nizhny Novgorod, Russia

Dr. Sci. Tech, professor of Transport Management Chair, Volga State Uni-versity of Water Transport, 603951, Nizhny Novgorod, Nesterova st., 5, platov_ji@mail.ru

Published
20-12-2022
How to Cite
Platov, A. J., & Platov, J. I. (2022). Efficient computation of ship’s wave-making resistance using michell’s integral. Russian Journal of Water Transport, (73), 206-215. https://doi.org/10.37890/jwt.vi73.327
Section
Operation of water transport, navigation and safety of navigation

Most read articles by the same author(s)