Efficient computation of ship’s wave-making resistance using michell’s integral
Abstract
The aim of the present paper is to find efficient method of computation the wave-making resistance of a ship using mitchell’s integral. The computational schemes described in publications suggest the use of simple quadratures (trapezoidal and Simpson’s rule) with a fixed number of integration’s intervals. This approach assumes manual setup of the algorithm for calculating the wave-making resistance for each new ship and makes it difficult to estimate the error of the obtained results. It is shown that the use of these simple quadratures makes it possible to obtain reliable results, but at the cost of tens of billions of calculations of the ship's surface function. The applicability of more advanced universal quadratures for calculating the mitchell’s integral is investigated: adaptive Newton-Cotes rules, Gauss-Kronrod rules and Clenshaw-Curtis quadratures. As a result, it is established that the Clenshaw-Curtis quadrature provides a reliable and efficient calculation of the mitchell’s integral. The computational scheme using this quadrature allows you to build an automatic algorithm for calculating the ship's wave-making resistance by type ship method.
References
Пикин Ю.Д. Тимошин Ю.С. Расчёт волнового сопротивления судов на электронно-вычислительной машине // Труды НТО Судпрома, 1965. Вып. 64. с. 62-69.
Shahjada bin Tarafder Md., Gazi bin M. Khalil, Ikhtiar bin Mahmud S. M. Computation of wave-making resistance of wigley hull form using michell’s integral // Journal - The Institution of Engineers, Malaysia, 2007. Vol. 68, No.4. pp. 33-40.
А.Ш. Готман А.Ш. Теоретические и экспериментальные основы гидродинамики водоизмещающих судов. Новосибирск. Изд-во СГУВТ, 2018 – 613 с.
Камил М.С. Вычисление интеграла Митчела волнового сопротивления для однокорпусного судна методом конечного корня // «Морские интеллектуальные технологии», 2014. N. 3 (25) T.1. С. 83-90.
Павленко, Г.Е Сопротивление воды движению судов. М.: Морской транспорт, 1956. 508 с.
Войткунский, Я.И. Сопротивление воды движению судов Л.: Судостроение, 1988. 288 с.
Ашик, В.В. Проектирование судов Л.: Судостроение, 1985. 320 с.
Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: Раско, 1991. 272 с.
Forsythe G.E., Malcolm M.A., Moler C.B. Computer Methods for Mathematical Computations Prentice Hall, 1977. 270 pp.
Kronrod, a C code which computes both a Gauss quadrature rule of order N, and the Gauss-Kronrod rule of order 2*N+1. URL: https://people.sc.fsu.edu/~jburkardt/c_src/kronrod/kronrod.html (дата обращения 19.07.2022). https://doi.org/10.1524/anly.1996.16.4.335
Kahaner D., Nash S., Moler C.B, Forsythe G.E., Malcolm M.A. Numerical Methods and Software. Prentice Hall, 1989 495 pp.
O’Hara, H., Smith F. J. Error estimation in Clenshaw-Curtis quadrature formula. Computer Journal, 1968. N. 11 ( 2), pp. 213–219. https://doi.org/10.1093/comjnl/11.2.213
Oliver J. A Doubly-Adaptive Clenshaw-Curtis Quadrature Method. The Computer Journal, 1972. Vol. 15 (2). pp 141–147. DOI: https://doi.org/10.1093/comjnl/15.2.141.
Copyright (c) 2022 Russian Journal of Water Transport
This work is licensed under a Creative Commons Attribution 4.0 International License.