Investigation of the impact of the construction of a bridge crossing over the river. Oka (Nizhny Novgorod) on the upstream waterways using mathematical modeling of the riverbed flow

  • Maksim A. Reshetnikov Volga State University of Water Transport, Nizhny Novgorod, Russia https://orcid.org/0000-0002-8492-0052
  • Yulia E. Voronina Volga State University of Water Transport, Nizhny Novgorod, Russia
  • Aleksandr N. Sitnov Volga State University of Water Transport, Nizhny Novgorod, Russia https://orcid.org/0000-0003-4720-8194
  • Marina V. Shestova Volga State University of Water Transport, Nizhny Novgorod, Russia

Abstract

For the projected bridge crossing over the river. An assessment of the impact of its construction on the reliability of operation of upstream aqueducts in the riverbed was carried out in Nizhny Novgorod. These conduits are subject to erosion and to assess the impact of the bridge supports being erected on the condition of the conduits, three-dimensional mathematical modeling of the river flow in the studied river area was performed. The simulation is based on a system of Navier-Stokes equations. The k-e turbulence model is used to describe turbulent phenomena. The three-dimensional geometry of the area under study includes the riverbed, bridge supports, and culverts.  The performed mathematical modeling of the section of the river The Oka in the area of the aqueducts in two states – in natural (before the construction of the bridge) and operational (after the bridge was put into operation) at low inter-soil levels allowed us to conclude that there was practically no effect of the bridge supports on further erosion of the bottom in the area of the aqueducts. Also, dredging, which is necessary to maintain navigation on an additional ship's course in the sleeve, does not affect the erosion of the bottom under the pipes of the aqueducts. The results of the work are intended for use in the design and construction of the facility.

Keywords: river flow, hydraulics, mathematical modeling, bridge supports, dredging

References

Гладков, Г.Л. Оценка воздействия на окружающую среду инженерных мероприятий на судоходных реках: Учебное пособие для вузов / Г.Л.Гладков, М.В.Журавлев, Ю.П.Соколов. - СПб, Изд-во А.Кардакова 2005. – 241 с.

Гришанин К.В. Основы динамики русловых потоков. – М.: Транспорт, 1990. 319 с.

Ситнов, А. Н. Оценка влияния строительства мостового перехода (г. Нижний Новгород) на русловые процессы и устойчивость судового хода в нижнем течении р. Ока / А. Н. Ситнов, Ю. Е. Воронина, М. В. Шестова // Научные проблемы водного транспорта. – 2023. – № 77. – С. 273-284. – DOI 10.37890/jwt.vi77.445. – EDN IUENBI.

Воронина Ю.Е., Шестова М.В., Решетников М.А. Влияние технологии возведения мостового перехода на р. Ока (15-й км судового хода), производства дноуглубительных работ и уровенного режима на русловые процессы и устойчивость судового хода.//Транспорт. Горизонты развития. 2023: Материалы международного научно-практичесого форума. ФГБОУ ВО «ВГУВТ». – 2023. – URL: http://вф-река-море.рф/2023/5_3.pdf

Липатов И.В., Решетников М.А., Бандин Д.А. Особенности создания математической модели и ее реализации для моделирования гидродинамики речного потока в нижнем течении р. Ока.//Транспорт. Горизонты развития. 2023: Материалы международного научно-практичесого форума. ФГБОУ ВО «ВГУВТ». – 2023. – URL: http://вф-река-море.рф/2023/5_6.pdf

Патанкар С. Численные методы решения задач теплообмена и динамики жидкости / Пер. с англ. – М.: Энергоатомиздат, 1984. – 152 с.

Зиновьев А.Т. Математическое моделирование руслового потока для прогнозов влияния строительства в поймах на гидрологический режим крупных рек (на примере реки Обь) / А.Т. Зиновьев, К.Б. Кошелев, К.В. Марусин, Е.Д. Кошелева // Водное хозяйство России, №2, 2017. – с. 54-72

Launder, B.E., and Spalding, D.B. 1974. „The numerical computation of turbulent flows‟, Comp. Meth. in Appl. Mech. and Eng., 3, pp. 269-289.

Rodi, W. 1979. „Influence of buoyancy and rotation on equations for turbulent length scale‟, Proc. 2nd Symp. on Turbulent Shear Flows.

EL TAHRY, S. H. (1983). k-epsilon equation for compressible reciprocating engine flows. Journal of Energy, 7(4), 345–353. doi:10.2514/3.48086

Author Biographies

Maksim A. Reshetnikov , Volga State University of Water Transport, Nizhny Novgorod, Russia

Ph.D. in Engineering Science, senior lecturer of the Department of waterways and hydraulic structures, Volga State University of Water Transport, 5, Nesterov st, Nizhny Novgorod, 603951, e-mail: serfskiwind@gmail.com

Yulia E. Voronina , Volga State University of Water Transport, Nizhny Novgorod, Russia

Ph.D. in Engineering Science, Associate Professor of the Department of waterways and hydraulic structures, Volga State University of Water Transport, 5, Nesterov st, Nizhny Novgorod, 603951

Aleksandr N. Sitnov , Volga State University of Water Transport, Nizhny Novgorod, Russia

professor, doctor of technical sciences, head of the Department of waterways and hydraulic structures, Volga State University of Water Transport, 5, Nesterov st, Nizhny Novgorod, 603951

Marina V. Shestova , Volga State University of Water Transport, Nizhny Novgorod, Russia

PhD in Associate Professor of the Department of waterways and hydraulic structures, Volga State University of Water Transport, 5, Nesterov st, Nizhny Novgorod, 603951

Published
14-03-2025
How to Cite
Reshetnikov , M. A., Voronina, Y. E., Sitnov, A. N., & Shestova, M. V. (2025). Investigation of the impact of the construction of a bridge crossing over the river. Oka (Nizhny Novgorod) on the upstream waterways using mathematical modeling of the riverbed flow. Russian Journal of Water Transport, (82), 226-235. https://doi.org/10.37890/jwt.vi82.569
Section
Water transport operation, waterways, communications and hydrography